BaseGammaGammaModel#
- class pymc_marketing.clv.models.gamma_gamma.BaseGammaGammaModel(data, *, model_config=None, sampler_config=None, non_distributions=None)[source]#
Base class for Gamma-Gamma models.
Methods
BaseGammaGammaModel.__init__
(data, *[, ...])Initialize model configuration and sampler configuration for the model.
Convert the model configuration and sampler configuration from the attributes to keyword arguments.
Build the model from the InferenceData object.
BaseGammaGammaModel.build_model
(**kwargs)Create an instance of
pm.Model
based on provided data and model_config.Create the fit_data group based on the input data.
Create attributes for the inference data.
Posterior distribution of mean spend values for each customer.
Posterior distribution of mean spend values for new customers.
Compute the average lifetime value for a group of one or more customers.
Compute the expected future mean spend value per customer.
Compute the expected mean spend value for a new customer.
BaseGammaGammaModel.fit
([method, fit_method])Infer model posterior.
BaseGammaGammaModel.fit_summary
(**kwargs)Compute the summary of the fit result.
BaseGammaGammaModel.graphviz
(**kwargs)Get the graphviz representation of the model.
Create the initialization kwargs from an InferenceData object.
BaseGammaGammaModel.load
(fname[, check])Create a ModelBuilder instance from a file.
BaseGammaGammaModel.load_from_idata
(idata[, ...])Create a ModelBuilder instance from an InferenceData object.
BaseGammaGammaModel.save
(fname, **kwargs)Save the model's inference data to a file.
BaseGammaGammaModel.set_idata_attrs
([idata])Set attributes on an InferenceData object.
BaseGammaGammaModel.thin_fit_result
(keep_every)Return a copy of the model with a thinned fit result.
Attributes
default_model_config
Return a class default configuration dictionary.
default_sampler_config
Default sampler configuration.
fit_result
Get the posterior fit_result.
id
Generate a unique hash value for the model.
posterior
posterior_predictive
predictions
prior
prior_predictive
version
idata
sampler_config
model_config