BaseModelBuilder#

class pymc_marketing.model_builder.BaseModelBuilder(model_config=None, sampler_config=None)[source]#

Base class for building models with PyMC Marketing.

It provides an easy-to-use API (similar to scikit-learn) for models and help with deployment.

Methods

BaseModelBuilder.__init__([model_config, ...])

Initialize model configuration and sampler configuration for the model.

BaseModelBuilder.attrs_to_init_kwargs(attrs)

Convert the model configuration and sampler configuration from the attributes to keyword arguments.

BaseModelBuilder.build_from_idata(idata)

Build the model from the InferenceData object.

BaseModelBuilder.create_idata_attrs()

Create attributes for the inference data.

BaseModelBuilder.graphviz(**kwargs)

Get the graphviz representation of the model.

BaseModelBuilder.idata_to_init_kwargs(idata)

Convert the model configuration and sampler configuration from the InferenceData to keyword arguments.

BaseModelBuilder.load(fname[, check])

Create a ModelBuilder instance from a file.

BaseModelBuilder.load_from_idata(idata[, check])

Create a ModelBuilder instance from an InferenceData object.

BaseModelBuilder.save(fname, **kwargs)

Save the model's inference data to a file.

BaseModelBuilder.set_idata_attrs([idata])

Set attributes on an InferenceData object.

Attributes

default_model_config

Return a class default configuration dictionary.

default_sampler_config

Return a class default sampler configuration dictionary.

fit_result

Get the posterior fit_result.

id

Generate a unique hash value for the model.

posterior

posterior_predictive

predictions

prior

prior_predictive

version

idata

sampler_config

model_config